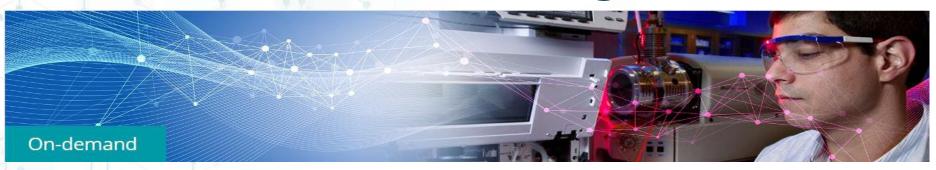

Division of Laboratory Systems

Oregon State Public Health Laboratory Shares Lessons Learned from Its Newborn Screening Program

Patrice K. Held, PhD

July 25, 2023



Agenda

- Introduction
 - Relevant OneLab™ Resources
 - Today's Presenter
- Oregon State Public Health Laboratory Shares Lessons Learned from Its Newborn Screening Program
- Q&A
- Upcoming Events

Resources- eLearning Courses

cdc.gov/labtraining/training-courses/good-lab-practices-molecular-genetics-testing is for laboratory professionals who perform molecular genetics testing or may consider addingmolecular genetics to the laboratories testing menu.

<u>cdc.gov/labtraining/training-courses/good-lab-practice-recs-biochem-genetic-</u> <u>testing_preanalytic-phase</u> is for laboratory professionals working in biochemical genetic testing or reference laboratories and healthcare professionals who order biochemical genetic tests.

<u>cdc.gov/labtraining/training-courses/lc_ms_ms_biochemical_genetics_laboratory</u> is for laboratory professionals working or aspiring to work in a biochemical genetics laboratory.

Resources-Job Aids

<u>reach.cdc.gov/jobaid/genetic-testing</u> lists common questions and answers about genetic testing and results.

reach.cdc.gov/jobaid/health-professionals-and-genetictesting contains basic information about molecular genetic testing and results.

reach.cdc.gov/jobaid/top-10-recommendationslaboratories-performing-molecular-genetic-testing contains recommendations for laboratory professionals performing molecular genetic testing.

Division of Laboratory Systems

Slide decks may contain presentation material from panelists who are not affiliated with CDC. Presentation content from external panelists may not necessarily reflect CDC's official position on the topic(s) covered.

Division of Laboratory Systems

CDC, our planners, and our presenters wish to disclose they have no financial interests or other relationships with the manufacturers of commercial products, suppliers of commercial services, or commercial supporters.

Presenter

Patrice K. Held

Manager of Oregon Newborn Screening Program, Oregon State Public Health Laboratory Co-Director of the Biochemical Genetics Laboratory, Oregon Health & Sciences University

Newborn Screening Celebrates 60 Years

Oregon State Public Health Laboratory Shares Lessons Learned from Its Newborn Screening Program

> Patrice K. Held, Oregon NBS Program Manager July 25, 2023

What is Newborn Screening?

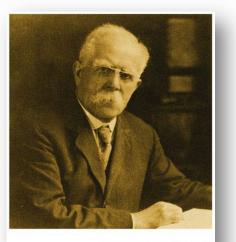
Newborn screening is a state public health program that identifies infants with treatable disorders, which may otherwise go unrecognized, to avoid or prevent adverse outcomes.

Newborn Screening Stats

 97% of the nearly four million newborns born in the United States each year are screened

https://www.newsteps.org/about-newsteps

 Saves or improves the lives of over 12,000 babies in the United States each year

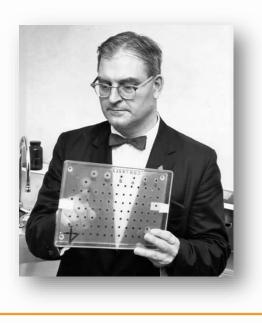

https://www.newsteps.org/about-newsteps

 In Oregon, approximately 40,000 babies are screened each year and more than 100 are diagnosed and treated for one of the conditions on the newborn screening panel.

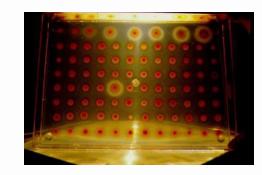
History of Newborn Screening

1908 Sir Archibald Garrod – "inborn errors of metabolism"
1934 Dr. Asbjorn Folling – discovery of PKU
1951 Dr. Horst Bickel – discovers a treatment for PKU

Nature Reviews | Genetics



History of Newborn Screening


- **1960** Dr. Guthrie developed bacterial inhibition assay to measure phenylalanine levels in dried blood spots
- **1963** Oregon passes law requiring universal PKU screening

Other states include Massachusetts, Ohio, Maryland, New York.

1965 All Oregon babies are screened

HOSPITAL	1892		,
Baby's Name	- 13	318	1
Date of birth			
Date 1st fee	ding		
Bottle [];	Breast [];	Bo	th 🗔
	ple		
Premature? Baby's Docto	Yes 🔲	N	•
Doctor's Ado		PR 7	1972
	ILL 3 CIRCLE		

Dr. Robert Guthrie

"No child should die or suffer disabilities if a simple blood spot can prevent it."

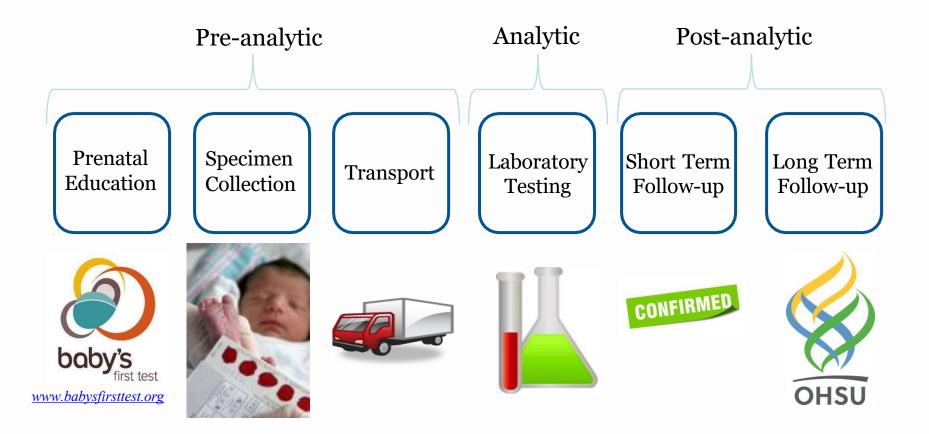
> Robert Guthrie, PhD, MD, 1916-1995 Developer of the first newborn screening test (the Guthrie test for PKU)

https://robertguthriepku.org/blog/

History of Newborn Screening

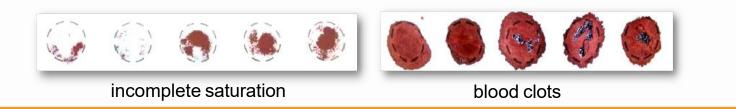
Years	Conditions in NBS
1960s	PKU
1970s	Sickle cell (SS) disease (SCD) and other S allele conditions, congenital hypothyroidism (CH),
1980s	Galactosemia (GAL), maple syrup urine disease (MSUD), congenital adrenal hyperplasia (CAH), biotinidase def. (BIO)
1990s	No uniform approach to screened conditions
2000s	Cystic fibrosis (CF); Medium-chain acyl CoA Dehydrogenase deficiency (MCAD); Very Long-chain acyl CoA Dehydrogenase deficiency (VLCAD); Long-chain acyl CoA Dehydrogenase deficiency (LCHAD); Trifunctional Protein deficiency (TFP); Carnitine uptake/transport; Methylmalonic aciduria (MMA) (mutase); MMA (cobalamin); Propionic Acidemia (PA); isovaleric acidemia (IVA); 3-methyl crotonyl carboxylase deficiency (3MCC);3-hydroxy 3-methylglutaryl-CoA lyase deficiency (3H3MG); Holocarboxylase def.; Beta-keto-thiolase deficiency (BKT); Glutaric acidemia (GA 1); ASA; Citrullinemia Type 1 (CIT 1); Homocystinuria (HCU); Tyrosinemia type 1 (TYR) 1; Severe Combined Immunodeficiency (SCID); hearing loss (HL)
2010s	Spinal Muscular Atrophy (SMA); Pompe; Mucopolysaccharidosis I; Critical Cyanotic Congenital Heart Disease (CCHD); X-linked adrenoleukodystrophy (X-ALD) 2022 Mucopolysaccharidosis II, 2023 GAMT deficiency
2020-2021	None added to RUSP

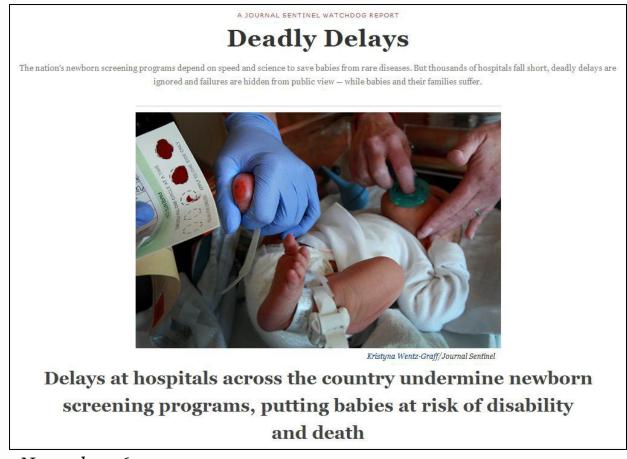
Int. J. Neonatal Screen. 2022, 8(3), 41; https://doi.org/10.3390/ijns8030041


Recommended Uniform Screening Panel

- May 2010 RUSP was adopted. RUSP is a list of disorders supported by the Advisory Committee on Heritable Disorders in Newborns and Children and recommended by the Secretary of HHS.
- **37 Core Conditions** listed on the RUSP
 - Inborn errors of metabolism
 - Endocrine Disorders
 - Hemoglobinopathies
 - Cystic Fibrosis
 - Severe Combined Immunodeficiencies
 - Hearing loss
 - Critical congenital heart disease

		Wet	abolic Disc				
ACMG Code	Core Condition	acid	Fatty acid oxidation disorders	Amino acid disorders	Endocrine Disorder	Hemoglobin Disorder	Other Disorder
PROP	Propionic acidemia	х					
мит	Methylmalonic acidemia (methylmalonyl-CoA mutase)	x					
СЫ А,В	Methylmalonic acidemia (cobalamin disorders)	х					
IVA	Isovaleric acidemia	х					
з-мсс	3-Methylcrotonyl-CoA carboxylase deficiency	x					
HMG	3-Hydroxy-3-methyglutaric aciduria	Х					
MCD	Holocarboxylase synthase deficiency	Х					
вкт	ß-Ketothiolase deficiency	Х					
GA1	Glutaric acidemia type I	Х					
CUD	Carnitine uptake defect/carnitine transport defect		×				
MCAD	Medium-chain acyl-CoA dehydrogenase deficiency		×				
VLCAD	Very long-chain acyl-CoA dehydrogenase deficiency		x				
LCHAD	Long-chain L-3 hydroxyacyl-CoA dehydrogenase deficiency		х				
TFP	Trifunctional protein deficiency		х				
ASA	Argininosuccinic aciduria			х			
CIT	Citrullinemia, type I			х			
MSUD	Maple syrup urine disease			х			
HCY	Homocystinuria			Х			
PKU	Classic phenylketonuria			х			
TYR I	Tyrosinemia, type I			Х			
СН	Primary congenital hypothyroidism				Х		
CAH	Congenital adrenal hyperplasia				Х		
Hb SS	S,S disease (Sickle cell anemia)					Х	
Hb S/ßTh	S, βeta-thalassemia					x	
Hb S/C	S,C disease					Х	
BIOT	Biotinidase deficiency						X
CCHD	Critical congenital heart disease						X
CF	Cystic fibrosis						X
GALT	Classic galactosemia						X
GSD II	Glycogen Storage Disease Type II (Pompe)						x
HEAR	Hearing loss						X
SCID	Severe combined Immunodeficiencies						x

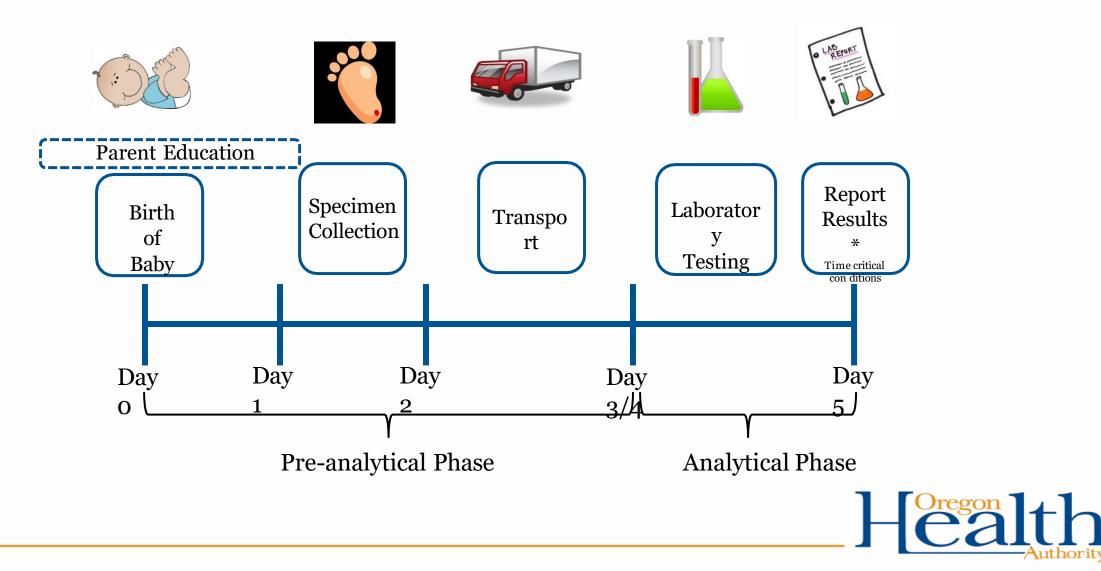

Newborn Screening System


Collection of the Newborn Screen

$ \begin{array}{c} & & \\ & & $	0 - 0 - 3 - 1 - DO NOT WRITE IN THIS SPACE	paper.
Y Baby's Last Name: Baby's First Name: HITE Baby's Last Name: Baby's First Name: WITE Image: String S	Birth Date: 24 Hour Time Birth Wt.: (((((((((((((((((((completely through filter p of the card. of blood. ss. od on and outside of the od on and outside of the
Image: Construction of the construc		Be sure that blood soaks Only collect on ONE SIDE Do NOT spot blood on top Do NOT use capillary tub It is acceptable to spot blo 37M OR ST

Specimen Transport

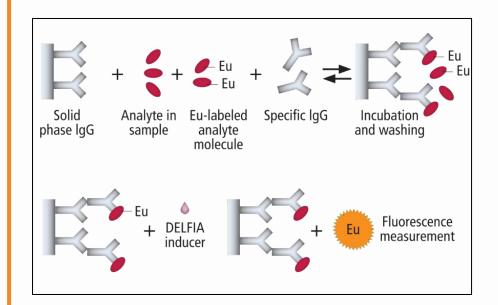
November 16, 2013



Timeliness of Newborn Screening

- Advisory Committee on Heritable Disorders in Newborns and Children provided recommendations for timeliness in newborn screening – March 2015
 - Initial screen collected with 48 hours after birth
 - Specimens should be received at laboratory within 24 hours of collection
 - Presumptive positive results for time-critical conditions reported within 5 days of life
 - Presumptive positive results for time-sensitive conditions reported within 7 days of life
 - All results should be reported within 7 days of life

Newborn Screening Timeline



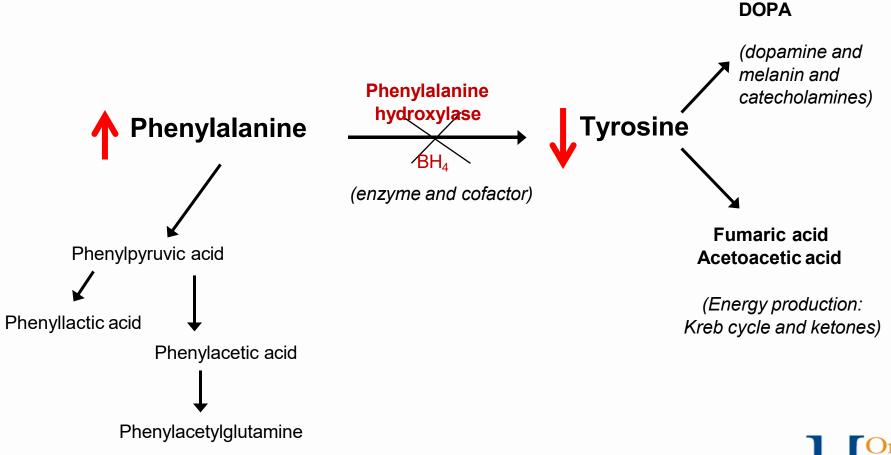
Technology Used in Screening

Screening for Hemoglobinopathies

Int. J. Neonatal Screen. 2018, *4*(4), 39; https://doi.org/10.3390/ijns4040039

Screening for Hypothyroidism, Congenital Adrenal Hyperplasia, and Cystic Fibrosis

Technology Used in Screening


Screening for Inborn Errors of Metabolism

Molecular Techniques Quantitative PCR SCID and SMA

Phenylalanine Metabolism

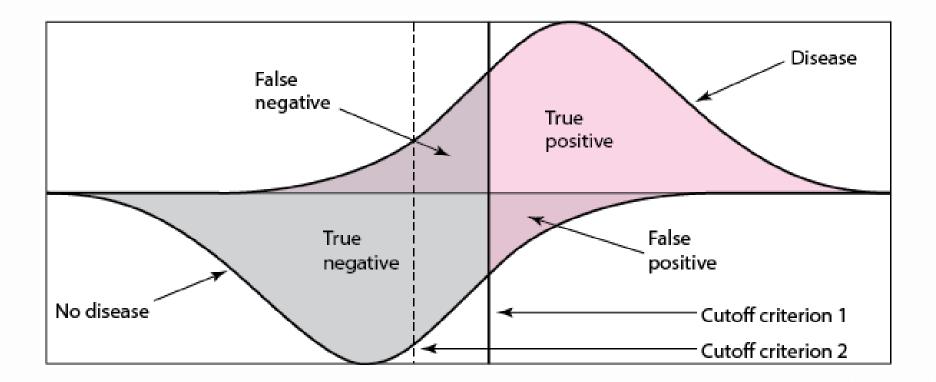
- Coregon alth Authority

Reporting of NBS Results Risk Assessment

• Screen Positive

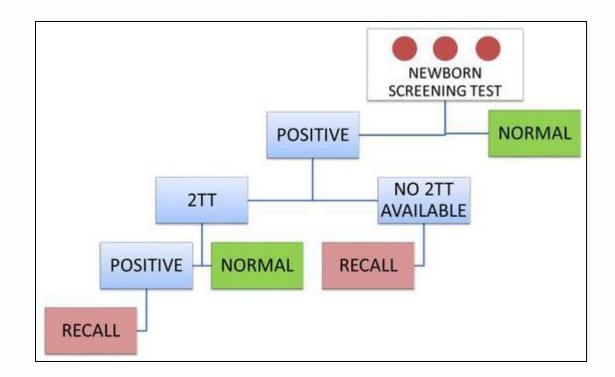
- Marker(s) elevated above (or below) cutoff
- Additional diagnostic testing is needed to confirm presence of disease
- Lab notifies health care providers

• Screen Negative


- Marker(s) within unaffected population distribution
- No additional action needed

• Inconclusive

- Unable to reliably detect markers
- Lab notifies health care providers to repeat newborn screen



Screening Test Performance

Tiered Testing To Improve Screening Performance

Int. J. Neonatal Screen. 2020, 6(4), 84; <u>https://doi.org/10.3390/ijns6040084</u>

Newborn Screening Follow-Up

Short Term Follow-up

To ensure that all newborns receive a valid screening test, and that those with a screen positive results receive a definitive diagnosis, in the most expedient manner possible.

Long Term Follow-up

Comprises the assurance and provision of quality chronic disease management, condition-specific treatment, and age-appropriate preventive care throughout the lifespan of individuals identified with a condition included in newborn screening.

Candidate Conditions for Newborn Screening

1. Expanding number of conditions for which the molecular basis is known

Total number of phenotypes* for which the molecular basis is known	7,544
Total number of genes with phenotype-causing mutation	4,853

OMIM Gene Map Statistics: OMIM Morbid Map Scorecard (Updated July 21st, 2023)

2. Rapidly growing list of new therapies entering market

3. Candidate conditions

Duchenne Muscular Dystrophy, Krabbe Disease, Congenital Cytomegalovirus

Selection Criteria for Conditions

Adapted from 1968 Wilson & Jungner: Principles and Practice of Screening for Disease.

Laboratory Test for Screening

- Rapid and economical laboratory screening test is available
- High specificity and sensitivity
- High positive predictive value
- Confirmatory test is available to validate screening results

Public Health System Infrastructure

- Treatment
- Clinical care
- Counseling

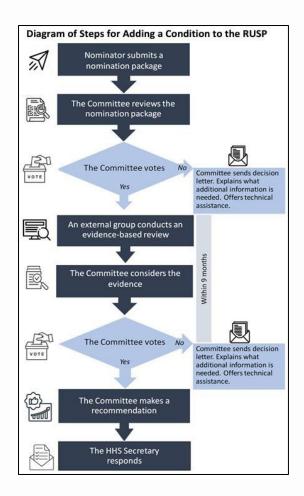
Disorder

- Prevalence (>1/100,000)
- Natural history understood
- Significant morbidity/mortality
- Effective treatment available
- Early treatment changes outcome (prevents or reduces illness)
- Routine care will not reveal disorder

Cost

- Screening is cost-effective

Emerging Criteria for Conditions


Box 2. Synthesis of emerging screening criteria proposed over the past 40 years

- The screening programme should respond to a recognized need.
- The objectives of screening should be defined at the outset.
- There should be a defined target population.
- There should be scientific evidence of screening programme effectiveness.
- The programme should integrate education, testing, clinical services and programme management.
- There should be quality assurance, with mechanisms to minimize potential risks of screening.
- The programme should ensure informed choice, confidentiality and respect for autonomy.
- The programme should promote <u>equity and access to screening</u> for the entire target population.
- Programme evaluation should be planned from the outset.
- The overall benefits of screening should outweigh the harm.

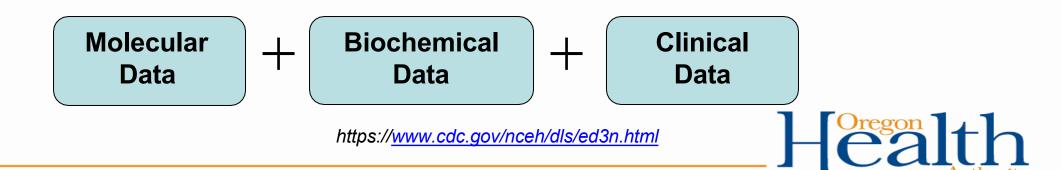
Andermann et al., Bulletin of the World Health Organization, April 2008, 86(4)

Addition of Conditions to RUSP

NET BENE	EFIT,	1		READINESS			CIDULITY
CERTAIN	ITY		Ready	Developmental	Unprepared	FEA	SIBILITY
SIGNIFICANT Benefit	Certainty	HIGH	A1 Screening for the condition has a high certainty of significant net benefits, screening has high or moderate feasibility. Most public health departments are ready to screen.	A2 Screening for the condition has a high certainty of significant net benefits and screening has high or moderate feasibility. Public health departments have only developmental readiness.	A3 Screening for the condition has a high certainty of significant net benefits and screening has high or moderate feasibility. Public health departments are unprepared for screening.	Feasibility	HIGH or MODERATE
SIGNIFIC	S			A4 ning would have a significant benefit; h of implementing population screening			LOW
		MOD	There is moderate certainty that	B 1-4 screening would have a significant ben	efit.		-
to ZERO Benefit		HIGH	There is high or moderate certain a small to zero net benefit.	C 1-4 nty that adoption of screening for the t	argeted condition would have		1.000
NEG Benefit	Certainty	MOD/HIGH	There is high or moderate certain a negative net benefit.	D 1-4 nty that adoption of screening for the t	argeted condition would have	19	8205
I		NOT	There is low certainty regarding	L 1-4 the potential net benefit from screenin	g.		

https://www.hrsa.gov/advisory-committees/heritable-disorders

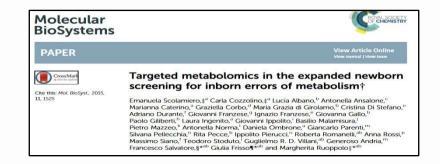
Goals for Newborn Screening Programs


- Harmonization between NBS programs
 - Language used
 - Diseases Screened
 - Assessing effectiveness (quality) of program
- Improvements in education and outreach
 - Parental education
 - Communication of results
- Improvements in long term follow-up
- Addressing health equity

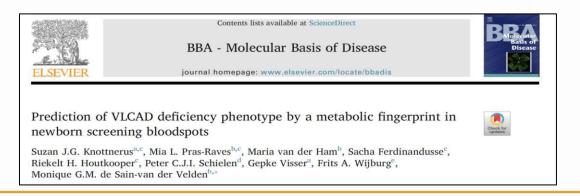
CDC: Role in Quality Assurance

- Newborn Screening Quality Assurance Program (NSQAP) develops analytical methods to measure substances in dried blood spots (DBSs) and produces certified DBS quality-control and reference materials for newborn screening tests.
- Initiated projects to look at harmonization of data across different testing platforms and laboratories
- Enhancing Data-driven Disease Detection in Newborns (ED3N) pilot program

NewSTEPs: Role in Quality Improvement


	2 A	PHL		
About NewSTEPs	Newborn Screening Disorders	Resource Library	Data Center	Manage Data
A Pregram of the Association	TPS or of Public Health Laboratories"		LOG IN SIG	GN UP Q
NewSTEPs is a national ne provide data, technical ass programs and assist states What does a profile get	NBS Community eveloperation of the second stance and training to newborn screening with quality improvement initiatives. Syou?			
access restricted according	to user role), and allows users to save centralized location.	Annella	Carlos and a second	

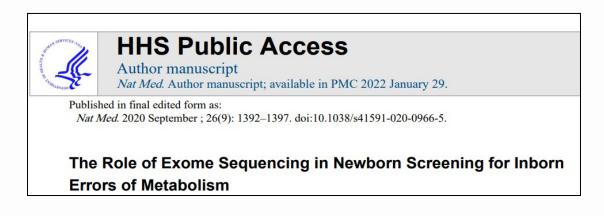
https://www.newsteps.org/


Health Authority

Future of Newborn Screening

Use of metabolomics to identify inborn errors of metabolism

Use of metabolomics to identify biomarkers of disease and predict clinical phenotype



La Marca et al., Int. J. Neonatal Screen. 2023, 9, 15

Future of Newborn Screening

Use of whole exome (or genome) sequencing to identify conditions in newborns

ARTICLEAmerican Journal of Human Genetics 104, 76-93, January 3, 2019Interpretation of Genomic Sequencing Results
in Healthy and III Newborns:
Results from the BabySeq ProjectOzge Ceyhan-Birsoy,^{1,2} Jaclyn B. Murry,^{2,4} Kalotina Machini,^{2,4} Matthew S. Lebo,^{2,3,4,11}
Timothy W. Yu,^{4,5,6} Shawn Fayer,⁷ Casie A. Genetti,⁵ Talia S. Schwartz,⁵ Pankaj B. Agrawal,^{4,5,8}
Richard B. Parad,^{4,9} Ingrid A. Holm,^{4,5} Amy L. McGuire,¹⁰ Robert C. Green,^{4,7,11} Heidi L. Rehm,^{2,3,4,11,12}
Alan H. Beggs,^{4,5,*} and The BabySeq Project Team

La Marca et al., Int. J. Neonatal Screen. 2023, 9, 15. Watson et al., Int. J. Neonatal Screen. 2022, 8, 41.

Newborn Screening Future Considerations

Continual request to add conditions to the panel

- Is our program infrastructure able to handle additional conditions?

Impact of new molecular technologies

- Carrier detection
- Variants of unknown significance
- How/When to provide information to physicians and parents on results

Consent for Newborn Screening

– Is "opt out" an adequate form of consent?

Storage and Use of Dried Blood Spots for Research

- What are the appropriate uses of the DBS and data?

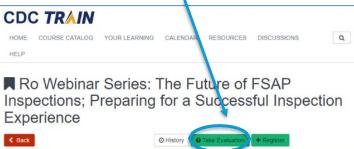
- Things that have evolved
- Number of conditions
- From a laboratory testing to a system
- Recognized timeliness of NBS
- NBS is Equity Focused
- Improvements in testing by addition of tiers (biochemical / molecular)

Continuing Education

In order to receive continuing education credits, you must:

- . Attend entire webinar/register for course on TRAIN
 - Register for the course in TRAIN
 - Registration passcode: V238
 - Select "PACE" credit type

Click "Launch"
 CDC TRAIN
 More COURSE CATALOG VOUR LEARNING CALENDAR RESOLRCES DISCUSSIONS
 HELP
 Ro Webinar Series: The Future of FSAP
 Inspections; Preparing for a Successful Inspection
 Experience
 Click on green "Mark Complete"
 Click on green "Mark Complete"
 COURSE CATALOG VOUR LEARNING CALENDAR RESOURCES DISCUSSIONS
 HELP


Ro Webinar Series: The Future of FSAP

Experience

Inspections; Preparing for a Successful Inspection

1 More Actions

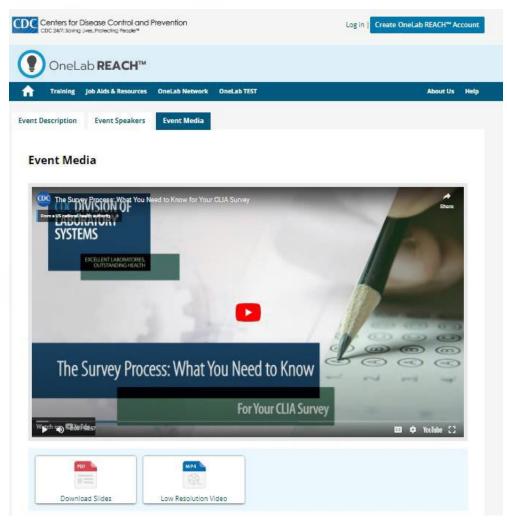
- Complete webinar evaluation
 - Click green "Take Evaluation" button

Complete the evaluation

- 3. Obtain P.A.C.E Certificate
 - Click on the blue "Print Certificate"
 button to download

CDC TRAIN HOME COURSE CATALOG YOUR LEARNING CALENDAR RESOURCES DISCUSSIONS Q HELP Ro Webinar Series: The Future of FSAP Inspections; Preparing for a Successful Inspection Experience K Back

Previous OneLab Network Event Videos* now LIVE!


To access previous event videos:

1. Visit <u>reach.cdc.gov/onelabnetwork/events/past-</u>

events page

- 2. Choose which webinar you would like to watch by clicking on the event title
- 3. Select the "Event Media" tab

*April and May 2023 videos coming soon!

Upcoming OneLab Events

OneLab Network:

September 7, 2023- CMS Proficiency Testing (PT) Final Rule, CMS-3355-F **September 26, 2023-** How Clinical and Public Health Laboratory Professionals Should Plan for Possible B. pseudomallei Exposure and Cases

OneLab Summit 2023:

October 3-5, 2023- "Thrive: People. Planning. Preparedness

Registration details coming soon!